Variability of Ground Motions in Southern California the 1995 to 1996 Ridgecrest Sequence
نویسنده
چکیده
Seismograms from the 1995 to 1996 Ridgecrest, California, earthquake sequence, recorded by the TriNet digital seismic network, provide high-quality waveforms from sites throughout southern California, including sites in markedly heterogeneous areas like the Los Angeles area sedimentary basins. Synthetic seismograms calculated by the refiectivity method with various 1D models are used as a baseline to measure the variability of amplitudes throughout southern California. Regardless of the model used, there is greater variability in the amplitudes from basin site records than from rock site records. Rock, soil, and basin sites are all rather insensitive to radiation pattern nodes at the three frequency bands investigated: 0.1 to 0.2 Hz, 0.2 to 0.4 Hz, and 0.4 to 0.8 Hz. This complicates the analysis because the nodes create singularity points in the distribution of ratios of observed and synthetic amplitudes. When stations near nodal planes are removed, the surface waves observed at most rock sites have peak amplitudes within a factor of 2 of synthetic waveform amplitudes. Peak amplitude of the surface waves observed at the soil and basin stations are more variable, with the bulk of the distribution of data/synthetic amplitude ratios less than 3 and a few outliers greater than 5. These outliers occur at the higher frequency bands. Soil and basin sites are also more often larger than the synthetics (higher median values). Most outliers can be explained by applying a water level of 50% to the radiation pattern. This reduces the scatter in the distributions to about the same extent as removing data within 10 ° of nodes. Thus, most of the outliers are sites that are insensitive to the nodes, not sites that are larger than the overall data distribution.
منابع مشابه
Observation of the seismic nucleation phase in the Ridgecrest, California, earthquake sequence
Near-source observations of five M 3.8-5.2 earthquakes near Ridgecrest, California are consistent with the presence of a seismic nucleation phase. These earthquakes start abruptly, but then slow or stop before rapidly growing again toward their maximum rate of moment release. Deconvolution of instrument and path effects by empirical Green's functions demonstrates that the initial complexity at ...
متن کاملTOPOLOGY OPTIMIZATION OF 2D BUILDING FRAMES UNDER ARTIFICIAL EARTHQUAKE GROUND MOTIONS USING POLYGONAL FINITE ELEMENT METHOD
In this article, topology optimization of two-dimensional (2D) building frames subjected to seismic loading is performed using the polygonal finite element method. Artificial ground motion accelerograms compatible with the design response spectrum of ASCE 7-16 are generated for the response history dynamic analysis needed in the optimization. The mean compliance of structure is minimized as a t...
متن کاملObservations on regional variability in ground-motion amplitudes for small-to-moderate earthquakes in North America
The regional variability in earthquake ground-motion amplitudes for a given magnitude and distance in western North American environments was examined using ShakeMap data from small-to-moderate events. The abundance of data for small-tomoderate events in California allows average ground-motion levels, as a function of magnitude and distance, to be resolved with a high level of confidence. Groun...
متن کاملSeismic Behavior of Jacket Offshore Platform Subjected to Near and Far Field Ground Motions
Offshore structures such as jacket platforms have to inevitably be designed against sever environmental actions. In seismically active areas these structures also become susceptible to earthquake excitations. Strong ground motions recorded in recent earthquakes, including the 1995 Kobe, Japan, 1999 Chi-chi, Taiwan and 1999 Kocaeli, Turkey earthquakes, revealed that the dynamic motions in nea...
متن کاملUncertainty in fundamental natural frequency estimation for alluvial deposits
Seismic waves are filtered as they pass through soil layers, from bedrock to surface. Frequencies and amplitudes of the response wave are affected due to this filtration effect and this will result in different ground motion characteristics. Therefore, it is important to consider the impact of the soil properties on the evaluation of earthquake ground motions for the design of structures. Soil ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005